

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Vibrational Properties of Bromyl Fluoride

Enrique J. Baran^a

^a Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina

To cite this Article Baran, Enrique J.(1976) 'Vibrational Properties of Bromyl Fluoride', *Spectroscopy Letters*, 9: 6, 323 — 327

To link to this Article: DOI: 10.1080/00387017608067443

URL: <http://dx.doi.org/10.1080/00387017608067443>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

VIBRATIONAL PROPERTIES OF BROMYL FLUORIDE

Key words: bromyl fluoride, force constants, mean amplitudes of vibration, bond properties.

Enrique J. Baran

Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina.

Recently the Raman spectra of liquid and solid bromyl fluoride, BrO_2F , have been obtained and interpreted¹; therefore, and in an attempt to obtain a deeper insight in the bond properties of this molecule, it seems interesting to determine some of its vibrational properties.

The structure of BrO_2F has been assumed to be pyramidal (C_s symmetry)¹, so that the molecule possesses the same geometry as ClO_2F , ClNF_2 and the thionyl and selenyl halides.

For the calculation of force constants we have used the "Kopplungsstufenverfahren" proposed by Fadini²⁻⁴, the G-matrix elements given by Cotton and Horrocks⁵ in their vibrational study of thionyl halides, and the frequency data from liquid bromyl fluoride¹.

The following geometrical parameters have been estimated, by comparison with related species; $d(\text{Br}-\text{O}) = 1.63 \text{ \AA}$, $d(\text{Br}-\text{F}) = 1.76 \text{ \AA}$ and both FBrO and OBrO angles = 108° .

The obtained set of valence force constants derived from the corresponding symmetrized force constants⁵, is given in Table 1.

The value for the f_r constant is only a little smaller than that found for the same bond in BrO_3F ($6.88 \text{ mdyn}/\text{\AA}^6$) but higher than in the isoelectronic BrO_3^- ion ($5.28 \text{ mdyn}/\text{\AA}^7$) and even in the heptavalent BrO_4^- ion (5.76

TABLE 1
Valence Force Constants for BrO_2F

Constant	$\text{mdyn}/\text{\AA}^6$	Description
f_r	6.76	$\text{Br}-\text{O}$ stretch
f_R	2.25	$\text{Br}-\text{F}$ stretch
f_b	0.58	OBrO bend
f_a	0.38	FBrO bend
f_{rr}	0.00	BrO/BrO interaction
f_{Rr}	0.00	BrF/BrO interaction
f_{aa}	0.12	FBrO/FBrO interaction
f_{rb}	0.00	BrO/OBrO interaction
f_{Ra}	0.02	FBr/FBrO interaction
f_{Rb}	0.00	FBr/OBrO interaction
f_{ab}	0.01	FBrO/OBrO interaction
f_{ra}	0.00	BrO/FBrO interaction

$\text{mdyn}/\text{\AA}^8$. The bond order, calculated by the simple method of Siebert⁷, is 1.55. All this results point out to a high degree of double bond character for this bond, whereas the relative small force constant calculated for the Br-F bond (f_R) sustains the supposition¹ of a large ionic character of this later bond, which contributes to the observed strengthening of the Br-O bond, due to the presence of a partial positive charge on the bromine atom.

Using the "Method of the Characteristic Vibrations (cf. ⁹⁻¹¹) we have also calculated the mean amplitudes of vibration for this molecule. Results, at different temperatures, are collected in Table 2. This calculations also confirms the ionic character of the Br-F bond, because the co-

TABLE 2
Mean Amplitudes of Vibration for BrO_2F (in $\text{\AA}^{\frac{1}{2}}$)

T (K)	$u_{\text{Br}-\text{O}}$	$u_{\text{Br}-\text{F}}$	$u_{\text{O}..\text{O}}$	$u_{\text{F}..\text{O}}$
0	0.0368	0.0465	0.060	0.068
100	0.0368	0.0466	0.060	0.068
200	0.0369	0.0478	0.062	0.074
298.16	0.0373	0.0508	0.067	0.082
300	0.0373	0.0509	0.067	0.082
400	0.0382	0.0548	0.072	0.091
500	0.0395	0.0590	0.077	0.099
600	0.0410	0.0632	0.083	0.107
700	0.0428	0.0673	0.088	0.115

responding amplitude values lies very close to figures obtained for the same bond in other species in which an important ionic contribution is also expected (for example: ClF_4^- (0.0526 Å at 298 K)¹² and BrF_2^- (0.0505 Å at 298 K)¹³). Also the large temperature dependence observed for these amplitude values is apparently typical for bonds with strong ionic character (cf.^{14,15}). On the other hand, Br-O amplitude values are found in the range which is characteristic for this bond^{6,11}.

Finally, it is worthy of notice that also the isostructural ClO_2F shows a fully analogous vibrational behaviour; i.e., high Cl-O and small Cl-F force constants¹⁶ and high values for the mean amplitude of vibration of the latter bond, which also shows in this case a great temperature dependence¹⁷.

All the calculations were performed using an IBM-360 computer (CESPI/Universidad Nacional de La Plata).

ACKNOWLEDGMENT

To the "Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina" for partial support of this research.

REFERENCES

1. R.J.Gillespie and P.Spekkens, *J.Chem.Soc., Chem.Comm.* 1975, 314.
2. A.Fedini, *Z.Angew.Math.Mech.* 44, 506 (1964).

3. W. Sawodny, A. Fadini and K. Ballein, *Spectrochim. Acta* 21, 995 (1965).
4. A. Fadini, *Dissertation. T.H. Stuttgart* (1967).
5. F. A. Cotton and W. D. Horrocks, *Spectrochim. Acta* 16, 358 (1960).
6. E. J. Baran and P. J. Aymonino, *Z. Naturforsch.* 27b, 1568 (1972).
7. H. Siebert, "Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie". Springer Vlg., Berlin (1966).
8. E. J. Baran, P. J. Aymonino and A. Müller, *Anales Asoc. Quím. Argent.* 58, 71 (1970).
9. A. Müller, C. J. Peacock, H. Schulze and U. Heidborn, *J. Mol. Structure* 3, 252 (1969).
10. E. J. Baran, *Anales Asoc. Quím. Argent.* 61, 141 (1973).
11. A. Müller, E. J. Baran and K. H. Schmidt, "Characteristic Mean Amplitudes of Vibration" in "Molecular Structures and Vibrations" (S. J. Cyvin, Editor). Elsevier Publish. Co., Amsterdam (1972).
12. E. J. Baran, *J. Mol. Structure* 21, 461 (1974).
13. E. J. Baran, *Z. Naturforsch.* 28b, 502 (1973).
14. E. J. Baran, *Monatsh. Chem.* 104, 1653 (1973).
15. E. J. Baran, *Monatsh. Chem.*, in the press.
16. D. F. Smith, G. M. Begun and W. H. Fletcher, *Spectrochim. Acta* 20, 1763 (1964).
17. E. J. Baran, *Z. Chem.* 13, 391 (1973).

Received: 4/23/76

Accepted: 4/27/76